1	Construct a 2×3 matrix, 3×2 matrix B, whose elements are given by $a_{i j}=\frac{(i-2 j)^{2}}{2}$
2	If $A=\left[\begin{array}{ccc}2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4\end{array}\right]$ and $B=\left[\begin{array}{ccc}-1 & 3 & 5 \\ 1 & -3 & -5 \\ -1 & 3 & 5\end{array}\right]$, show that $A B=B A=O_{3 \times 3}$
3	If $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then (i) find λ, μ so that $A^{2}=\lambda A+\mu I$ (ii) prove $A^{3}-4 A^{2}+A=O$
4	Express the following matrices as the sum of symmetric and a skew-symmetric matrix: (a) $\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$ (b) $\left[\begin{array}{ccc}3 & -1 & 0 \\ 2 & 0 & 3 \\ 1 & -1 & 2\end{array}\right]$ (c) $\left[\begin{array}{ccc}1 & 3 & 5 \\ -6 & 8 & 3 \\ -4 & 6 & 5\end{array}\right]$ (d) $\left[\begin{array}{ccc}6 & 1 & -5 \\ -2 & -5 & 4 \\ -3 & 3 & -1\end{array}\right]$ (e) $A=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$ (f) $A=\left[\begin{array}{ccc}2 & 3 & 1 \\ 1 & -1 & 2 \\ 4 & 1 & 2\end{array}\right]$
5	Find the matrix C, such that $A+B+C$ is a zero matrix, where $A=\left[\begin{array}{ccc}2 & 0 & 1 \\ 3 & -1 & 0\end{array}\right], B=\left[\begin{array}{ccc}2 & 1 & -1 \\ 0 & 2 & 1\end{array}\right]$
6	Find a matrix X such that $2 A+B+X=0$, where $A=\left[\begin{array}{cc}-1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{cc}3 & -2 \\ 1 & 5\end{array}\right]$
7	If $2 A+3 X=5 B$, where $A=\left[\begin{array}{cc}2 & -2 \\ 4 & 2 \\ -5 & 1\end{array}\right], B=\left[\begin{array}{cc}8 & 0 \\ 4 & -2 \\ 3 & 6\end{array}\right]$, find X.
8	If $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$, prove that $A^{3}-4 A^{2}+A=0$.

9	If $A=\left[\begin{array}{cc}1 & 0 \\ -1 & 7\end{array}\right]$, find k such that $A^{2}-8 A+k I=0$.
10	(a) If $A=\left[\begin{array}{lll}2 & 1 & 3 \\ 4 & 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -1 \\ 0 & 2 \\ 5 & 0\end{array}\right]$, verify that $(A B)^{\prime}=B^{\prime} A^{\prime}$
11	If $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$, prove that $A^{-1}=A^{2}-6 A+11 I$
12	If $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$, prove that $(A+B)(A-B) \neq A^{2}-B^{2}$
13	Find the integral values of $x,\left[\begin{array}{lll}x & 4 & -1\end{array}\right]\left[\begin{array}{ccc}2 & 1 & -1 \\ 1 & 0 & 0 \\ 2 & 2 & 4\end{array}\right]\left[\begin{array}{lll}x & 4 & -1\end{array}\right]^{t}=0$
14	Find the value of $x:\left[\begin{array}{ccc}2 & 0 & 7 \\ 0 & 1 & 0 \\ 1 & -2 & 1\end{array}\right]\left[\begin{array}{ccc}-x & 14 x & 7 x \\ 0 & 1 & 0 \\ x & -4 x & -2 x\end{array}\right]$ is equal to an identity matrix
15	Construct a 3×3 matrix $A=\left[a_{i j}\right]$ whose elements are given by $a_{i j}= \begin{cases}1+i+j & , i \geq j \\ \frac{\|i-2 j\|}{2} & , i<j\end{cases}$
16	If $A=\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right)$ and $A^{3}-6 A^{2}+7 A+k I_{3}=O$, find k
17	If $A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12\end{array}\right]$ and B is a matrix of order 4×3, write order of matrix $(A B)^{T}$
18	Find the value of x and y if $2\left[\begin{array}{ll}1 & 3 \\ 0 & x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$
19	If $A=\left[\begin{array}{llll}a & b & c & d\end{array}\right]$, write the value of $A A^{T}$

20	Find whether the following system of equations is consistent or not, find solution of the system also. $3 x-y+2 z=3$ $5 x-7 y+z=11$ $x+y+z=6$ (i) $\begin{aligned} & x-2 y-z=1 \\ & 2 x+y+3 z=5 \end{aligned}$ (ii) $6 x-8 y-z=15$ (iii) $3 x+2 y-6 z=7$ $\begin{aligned} & x+2 y+3 z=14 \\ & x+4 y+7 z=30 \end{aligned}$
21	Using matrix method, solve the following system of linear equations $4 x+2 y+3 z=2$ $x+2 y+z=7$ $x-y+z=2$ $x+y-z=1$ (i) $x+y+z=1$ (ii) $x+3 z=11$ (iii) $2 x-y=0$ (iv) $3 x+y-2 z=5$ $2 x-3 y=1$ $2 y-z=1$ $3 x+y-2 z=3$ $x-y-z=-1$
22	If $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]$, find A^{-1}. find A^{-1}. Hence solve the following: $x+2 y+z=4,-x+y+z=0, x-3 y+z=2$
23	If $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3\end{array}\right]$, find A^{-1} and use it to solve the following system of equations: $x+y+2 z=0 ; x+2 y-z=9 ; x-3 y+3 z=-14$.
24	If $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3\end{array}\right]$, find $A B$
25	Solve the given system of equations: (i) $\frac{2}{x}-\frac{3}{y}+\frac{3}{z}=10 ; \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=10 ; \frac{3}{x}-\frac{1}{y}+\frac{2}{z}=13$ (ii) $\frac{2}{x}+\frac{3}{y}-\frac{4}{z}=1 ; \frac{3}{x}+\frac{3}{y}+\frac{8}{z}=\frac{31}{6} ; \frac{6}{x}+\frac{2}{y}+\frac{1}{z}=\frac{47}{12}$

